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Architecture combines the latent space interpretability of VAEs 
with a sample efficient tabular feature transformer. 

Introduction

• We propose TabVI: A probabilistic transformer model for 
single-cell genomics.

• Adapts transformer architectures to gene functionality, which 
is hierarchical and modular, unlike the sequential structure of 
natural language.

• Improves latent embedding learning. Validated on cell type 
annotation and integration benchmarks.

• Robust to dataset scaling using interpretable, sample-
specific feature attention.

• Excels where large-scale foundation models are less effective 
in single-cell analysis.
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A. Attention mask of non-
sparsely expressed 
genes. 

B. Normalized expression 
values corresponding 
to non-sparsely 
expressed genes. Cells 
and genes organized 
as in (A). 

C. Expression and mask 
values for 
representative, non-
sparse genes.

Cell Type-specific Feature Selection

A. Threshold for “attended to” genes. 
B. Fraction of Sst cells in which each gene is attended to (y-axis). 
C. Heatmap of binarized attention mask values, arranged hierarchically by 

genes and stratified by cell types. Color denotes cell types within the Sst 
subclass.

Results

• TabVI’s latent representations of human middle temporal gyrus 
cells originating from SEA-AD donors spanning the entire 
spectrum of AD (A).

• TabVI achieves higher overall classification performance 
compared to scAnVI [5] or scGPT [1] representations (B), while 
maintaining scVI’s [3] representation capabilities (C). 

• TabVI achieves high classification performance across cell 
types (D).

• We compare macro F1 annotation metrics from TabVI against 
scAnVI [5] when training data consists of fewer genes, fewer 
cells, or both. 

• TabVI performance consistently improves when more features are 
introduced in the input data. (left)

• Each component of TabVI is necessary to produce peak 
performance (we show scAnVI [5], a model with attentive 
masking only, and TabVI, the model with both attentive masking 
and a tabular transformer)
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Benchmarking across integration and annotation tasks. 

Scalability performance evaluated on subsets of 
features and observations.

• The attention mechanism captures cell type-specific 
and combinatorial attention patterns. 

• These patterns are amplified when we select against 
sparsity.
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